It’s Taxon Time

Written by: Maryanne Venables, Strategic Learning

The “Zoo Animals” went into the tin with the blue lid, while my “Farm Animals” went in the tin with the green lid. The animal kingdom, as I knew it, lived under my bed in Streets ice-cream tins. All were classified, according to contexts developed from the songs, books and experiences of a four-year old. Fast forward to 2012 and, as a Museum Educator, I am delighted to be sharing the topic of Animal Classification with the next generation of biologists, taxonomists or collectors.

Queensland Museum has re-launched Animal Classification into our range of school programs. Bookings are now being taken for Yr 3-7* classes to experience a value-added program to enrich your Museum visit

If the  concept of Animal Classification makes you numb, let us please change your mind. School programs are delivered by the Museum Learning team, using real collections to elicit real experiences. This is a valuable option in an increasingly virtual world.

Students can interact with real museum specimens

This program primarily responds to Science Understanding descriptors in Australian Curriculum: Science for Yrs 3 and 7, but also addresses Science as a Human Endeavour and Science Inquiry Skills for Yrs 3-7.

So how does classification apply to our lives? You don’t even need to be a collector to use it. We find classification systems everywhere – from libraries to supermarkets. Things that are in some way similar are arranged together for comprehension and convenience.

So how does animal classification apply to our lives? Animals are grouped as part of the process that describes or identifies them down to an individual species. This helps us effectively communicate information about them. Understanding characteristics of a particular species or group can affect our health and welfare, economic growth and ability to effectively manage the conservation of our wildlife.

Dr Karl Kruszelnicki has shared the virtues of the dung beetle since the CSIRO introduced several species to Australia in the late 1960s. The objective was to manage a bi-product of grazing and its impact on fly control (the bi-product that wasn’t destined for our taste buds or footwear). Selected species were introduced to a number of Australian climates and ecosystems resulting in a biological control success story. Our approx 350-400 species of native dung beetle evolved to mostly feed on the smaller, drier, fibrous dung pellets of marsupials.

The hard-working Honeybee

Other examples of genus-specific relationships are applied in agriculture (both in pollination and pest management). According to the Queensland Department of Agriculture, Fisheries and Forestry, Honeybees add an estimated $4 – 6 billion to Australian agricultural and horticultural industries, annually.

Further examples of identified animal groups have supported medical research. Studies of Tammar Wallaby and other marsupial forms of milk have provided medical researchers with a template for investigating antimicrobial compounds, potentially resistant to “superbugs”.

Examples of animals helping humans can be ‘reciprocated’ in conservation campaigns. Most Queenslanders are aware of the plight of the endangered Northern Hairy-nosed Wombat. Distribution once extended south to the Victorian border. By the 1980s, a drastically reduced population was reportedly (without the advanced surveying methods in use, today) around 35 wombats. A remnant population in Epping Forest National Park (South-West of Mackay, Queensland) was recognised as the last chance to protect this species. Since then, wombat numbers have been carefully monitored and protected, reaching around 138 today. In 2009, the colony was deemed at risk should an environmental disaster such as fire or flood affect the region. To mitigate this, the decision was made to establish a second breeding colony 600km south at Richard Underwood Nature Refuge (near St George, Queensland). Recent reports (May 2012) indicate this second population is stable with the current “snout count” at seven females, three males and three joeys in good condition.

The Northern-Hairy-Nosed wombat is critically endangered

A smaller cousin, the Southern Hairy-nosed Wombat has maintained a conservation status of ‘Least Concern’, although recent reports suggest it, too is affected by similar threats.  These include reduced/replaced food plants and possibly toxins from introduced weeds. Relationships determined by the classification of animals can help us to make informed decisions. Are we prepared to learn from the past to determine the future?

The Animal Classification theme is supported by a range of Queensland Museum exhibitions and resources.

* Please note:  Secondary school, teachers can also select a Biodiversity and Classification program, which can be tailored to your unit of work by prior arrangement.

Science Principles in Traditional Aboriginal Australia

During traditional times, Aboriginal people showed an ingenious mastery of physics to create hunting equipment and labour-saving tools.  They demonstrated knowledge of chemistry, held a deep understanding of biology through powerful observation and using all the senses to predict and hypothesis.  Additionally, they were competent at testing through trial and error, making adaptations and retesting to achieve a final result.   Aboriginal people were experts at reading signs signalling seasonal changes and life cycles.  They understood that the entire environment around them was intertwined and depended on careful stewardship of their custodial area to survive and thrive.

Traditional knowledge held by Aboriginal people demonstrated an ingenious mastery and deep understanding of Biology and Chemistry. From generations of knowledge passed down orally, they invented labour-saving tools and techniques aimed at making food gathering easier. The rainforest people knew how to make multiple uses of plants such as the buttress roots of the fig tree, lawyer cane, seeds, palms and vines.

Traditional aboriginal shields were developed using a variety of scientific properties including strength and flexibility

For example, they were able to understand that grinding toxic seeds on the morah stone would break down cell membranes and when put in running water the toxins would leach out.   They discovered that heating up toxic seeds would also break down cell membranes and remove the poison.  The Aboriginal people of the rainforest invented the bicornual basket to act as a sieve for the ground seeds.  They knew that placing the basket in running water, loaded with the ground seeds, the toxins would leach out. The cleverly woven basket could stay for days at a time in the water without disintegrating because of the vine’s strength.  These baskets made from lawyer cane, Calamus caryotoides, which is a prickly climbing vine were ergonomically designed to endure and withstand many functions.

The rainforest is a veritable supermarket, abundant in plant and animal food sources. Aboriginal people of the rainforest used their spearthrowers, firesticks, morah stones, nutstones, bicornual baskets and ooyurka stones to make hunting and the preparation of food easier.

The spear thrower (also called a woomera) is used with a spear. It acts as a lever to project the spear with force and speed.  This enabled the thrower to increase the spear’s trajectory over a longer distance.

The morah stone was designed to grate or grind down toxic seeds in preparation for leaching.  A push and pull motion was used on the stone with the topstone as it broke down the seed on the morah stone

The bicornual basket has an ergonomical design. The Aboriginal people of the rainforest designed it to fit securely and comfortably on their back whilst the handle part is hung from the forehead.  From this position, the basket user could carry a controlled weight easily while having their hands free.

The t-shaped ooyurka stone was designed as a scraper and was used with a push and pull motion to remove seed residue from the morah stone. It was also used to make a groove in a stone axe head and could be bound easily with twine.

Ooyurka stones were shaped to enable an efficient “pull and push’ motion

The nut stone was designed to make cracking open the hard exterior of nuts easier. The grooves etched in the nutstone allowed less force to be exerted.

Firesticks usually consisted of two long drill sticks and a case that protected the drill parts. The firemaker would use friction between the two drill sticks to make heat and a fire would result.

The Rainforest people built strong shelters made with lawyer cane, fan palm leaves, blady grass, rushes and barks.  Knowledge of tight weaving and thatching handed down through generations gave them the skills to waterproof their shelters against heavy tropical rains. Inside the shelters the people kept their precious shields, swords, baskets, axes, firesticks, ochre, boomerangs. Outside sat morah stones and nut-stones.  For many generations this lifestyle was maintained.

Without this deep scientific knowledge and understanding, Aboriginal people would not have survived for thousands of years.